International Journal of Advanced Engineering: Artificial Intelligence, Robotics and Automation
ISSN 3049-396X

Vol.:2 Issue:1
Published online on: Dec 2025
PP. 35-41

Design, Modeling, and Experimental Validation of Advanced
Control Algorithms for Hoist, LT, and CT Operations using a
Robotic Crane

Kishan Rajoriya !, Arun Singh, Vishal Taretiya®, Anand kumar Singh*
1234vikrant University, Gwalior, India

Abstract

This paper presents the design and experimental validation of a laboratory-scale robotic crane prototype (or *'clone')
capable of performing hoist travel (HT), long travel (LT), and cross travel (CT) operations. The testbed is tailored for
validating advanced control theory and deep visual serving (DVS) in a controlled setting. The system enables the study of
efficient, safe, and precise handling of materials by abstracting the complexities of a full-scale industrial environment. A
prototype clone of a manufacturing crane was built and tested, demonstrating enhanced control precision, dynamic
stability, and collaborative capabilities compared to traditional manual operation models. The experimental results confirm
the feasibility of deploying non-linear anti-sway control and DVS for millimeter-level placement accuracy on a physical
model.
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1. Introduction

The fundamental processes of material handling in manufacturing environments are defined by three primary
movements: Hoist Travel (HT, vertical lift), Long Travel (LT, longitudinal movement along the runway), and Cross
Travel (CT, lateral movement across the bridge). In traditional industrial settings, controlling these movements relies
heavily on human operators utilizing push-button pendants, radio controls, or exposed/enclosed cabs. This reliance on
human judgment introduces significant variability in cycle times, accuracy, and, most critically, safety. Traditional
operations often necessitate multiple co-workers on the ground to assist in guiding and positioning the load, increasing
the exposure of personnel to potential hazards.

The challenge addressed by the development of this specific robotic crane testbed is to create a physical platform
capable of validating complex control theory and sensor fusion algorithms necessary to achieve high positioning
precision characteristic of dedicated industrial robots while retaining the large workspace principles inherent to
overhead cranes. This necessitates the creation of a sophisticated cyber-physical system capable of performing
millimeter-scale placement accuracy and dynamic trajectory planning, a significant step beyond simple remote control.
The prototype development moves the study of operational control from highly variable manual input to highly
consistent, optimized autonomous execution, tailored specifically for complex tasks such as collaborative Pick-and-
Load operations within a modern manufacturing floor.

1.1. Contextualizing Robotic Automation in Manufacturing

The robotic crane system is designed not merely for automation (Industry 4.0), but specifically for human-machine
integration and augmentation, aligning with the core philosophy of Industry 5.0. Instead of fully replacing human
workers, the system is engineered to support and augment human tasks, repositioning human workers from performing
repetitive, hazardous motions to engaging in more creative jobs requiring problem-solving, intuition, and
experience. This requires a balanced approach to automation, ensuring optimal use of robotics where safety and
precision are paramount.

The testbed system must seamlessly coordinate the three-axis automation (HT, LT, CT) to define the 3D workspace.
The integration of collaborative capabilities (Collaborative Pick-and-Load) interprets the large-scale crane as a macro-
positioning device that can safely present heavy components to human workers or smaller, specialized collaborative
robots (cobots). This ensures that while the crane handles the hazardous, high-capacity movements, the final, fine-
grained assembly or placement task can be executed safely and precisely, often supported by systems that reduce

Copyright © 1JAE 2024
Corresponding Author’s E-mail ID: kishanrajoria@gmail.com 35



manpower through simple, conversational operation and unmanned capabilities. The successful deployment of this
architecture mandates rigorous safety and reliability engineering, supported by compliance with robust industrial
safety regulations.

2. SYSTEM ARCHITECTURE AND MECHATRONIC DESIGN SPECIFICATION

2.1. Mechanical Foundation and 3d Kinematic Modeling

The robotic crane system is structurally based on a gantry mechanism, utilizing aluminum rails for the long travel
(LT) axis and a carriage/trolley assembly for cross travel (CT), powered by low-voltage DC motors. This prototype
allows for controlled study of the 3D kinematic model, enabling precise mechanical execution for optimal control
performance. The demand for sub-millimeter positioning accuracy necessitates accurate modeling of the
components’ dynamics for high-performance control. Automated production processes, such such as robotic welding
and high-precision CNC machining, are employed to produce critical components like wheels, shafts, drums, and end
carriages. These processes minimize structural defects and ensure accuracy in large, heavy sections, preventing
structural deflection that could introduce unpredictable deviations into the dynamic control models.

Kinematic modeling begins with defining the degrees of freedom (DOF) associated with the bridge/trolley/hoist
assembly. While the primary axes are 3-DOF (HT, LT, CT), the system must often model additional dynamic degrees
of freedom, namely the pendulous swing motion of the payload, which complicates the dynamic equations. The robust
design includes lubrication-free bearings and components made from high-performance polymers, which eliminate the
need for external lubrication, thereby improving efficiency and reducing maintenance costs, which is crucial for
maximizing uptime in automated operations. The mechanical systems are also integrated with robust energy chain
systems (e-chains) to manage the dynamic motion of cables over long travel distances, ensuring efficient and reliable
guidance for power and data lines.

2.2. Control Hardware Layer: Functional Safety and Reliability

The control layer is built upon a foundation of functional safety principles, with the NVIDIA TX2 serving as the
core computing platform for advanced control and vision algorithms (DVS, path planning). The prototype
utilizes DC motors for actuation and an ADA controller for low-level motor command execution and feedback
interfacing. Due to the inherent hazards associated with moving large payloads, compliance with industry safety
regulations is mandatory. The implementation requires Safety PLCs (Programmable Logic Controllers) to execute
critical safety functions, such as monitoring safe speed limits, ensuring safe stops, and managing emergency shut-
down procedures. This dedicated hardware architecture facilitates compliance with international standards such as
ISO 10218:2025, which provides the latest requirements for industrial robot safety and incorporates specific
guidance for collaborative applications and safe human interaction.

Precision and smooth motion are managed through high-resolution encoders and Variable Frequency Drives (VFDs).
These drives facilitate the use of optimized acceleration profiles, such as S-curve trajectories, essential for initiating
and terminating movement smoothly to minimize the excitation of payload oscillation. Reliability is further
enhanced by integrating proactive maintenance strategies. This predictive maintenance capability minimizes
unplanned downtime by signaling exactly when maintenance or component replacement is necessary, thereby
ensuring the long-term operational consistency required for achieving optimum productivity.

2.3. Sensor Fusion Architecture for Environmental Awareness
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Achieving precise, safe, and collaborative operation requires a sophisticated, multi-modal sensor fusion system. The
architecture integrates high-resolution cameras, industrial encoders for primary axis feedback, and specialized depth-
sensing devices.

Crucially, the limitations of passive camera systems in accurate depth estimation and vulnerability to varied lighting
conditions are addressed through the integration of active 3D sensors. Specifically, the utilization of products
incorporating short-range LIiDAR and cameras, such as the Intel RealSense L515, allows for highly precise location
estimation of short-range obstacles. This sensor combination provides a high-fidelity 3D point cloud, enabling the
recognition of obstacles that are not restricted to the ground plane, thereby ensuring that the safety envelope is
dynamically calculated in full 3D space. The fused data streams—including position, velocity, 3D spatial geometry,
and visual image data—are synchronized to create a unified state estimation model. This model provides the
comprehensive, real-time spatial awareness necessary for advanced functions such as Deep Visual Servoing (DVS)
and Dynamic Path Planning, defining the positions of the crane, the payload, and all surrounding objects and
personnel.

3. ADVANCED CONTROL ALGORITHMS FOR DYNAMIC TRAJECTORY AND STABILITY

3.1. Kinematic and Dynamic Modeling of the Gantry Crane System

The precise control of the robotic crane hinges on the accurate mathematical derivation of its non-linear dynamics.
The payload, suspended by a wire, acts as a dynamic pendulum, coupled to the LT and CT motions of the trolley.
The equations of motion must account for the inertial forces and the time-varying cable length (HT motion),
resulting in a coupled, non-linear system. Accurate modeling is required to calculate the real-time oscillation angle
and angular velocity of the payload, which are the primary disturbances that must be suppressed to ensure precise
final placement. This forms the basis for designing effective anti-sway control systems.

3.2. Anti-Sway Control Strategies for HT/LT/CT Operations

Anti-sway control is the primary enabler of speed and precision in crane automation. Without effective suppression,
aggressive acceleration profiles necessary for high throughput would induce unacceptable load oscillation, rendering
fine-grained positioning impossible.

Trajectory Planning as Feedforward Control: The initial defense against sway is optimized feedforward control
via trajectory planning. Utilizing S-curve trajectory generation, the system ensures that acceleration and deceleration
phases are carefully managed to avoid exciting the natural oscillation frequency of the load.!! This strategy is
designed to minimize the residual vibration once the crane reaches its target velocity, often leveraging principles of
optimal control to shape the input commands effectively.?

Robust Feedback Control: Given the non-linear, parameter-dependent nature of the crane dynamics (e.g., payload
mass and cable length are often variable and imprecisely known), robust feedback controllers are essential:

1. Phase Plane Theory: This approach is applied to analyze and design boundaries for stabilizing swing motion,
proving particularly effective for suppressing sway during relatively small changes in the crane’s posture during
acceleration and deceleration.!

2. Sliding Mode Control (SMC): SMC is implemented to provide robust, finite-time anti-sway tracking control.?
SMC offers superior resilience against uncertainties, such as unmodeled dynamics or variations in payload mass.
This robustness is critical for guaranteeing consistent performance across diverse operational scenarios.

3. Hybrid Fuzzy Logic Control: Leveraging expertise in advanced computational intelligence, Hybrid Fuzzy
Logic control provides a mechanism to compensate for complex non-linear effects, such as the centrifugal force
induced by the swing motion itself, particularly during dynamic or high-speed maneuvers.!! By incorporating
intelligent, human-like damping rules, the Fuzzy Logic system enhances overall stability and ensures the rapid
asymptotic convergence of the swing angle to zero.*

3.3. Trajectory Optimization for Collaborative Precision

For tasks involving repeated, precise placement, such as the Collaborative Pick-and-Load operation, the system
utilizes Iterative Learning Control (ILC). ILC is a method designed to systematically improve performance over
repeated executions of the same task. By observing errors from previous cycles, the ILC algorithm refines the input
trajectory for subsequent runs, guaranteeing the asymptotic convergence of the payload’s position, velocity, and
angular acceleration. This learning capability ensures that the high-level precision required for collaborative
interaction—where the crane may hand off a component to a human or smaller robot—is reliably achieved within
extremely tight tolerances.

Table 1. Control Algorithms for Automated 3D Movement and Sway Suppression.

Primary Control Applicable Control

Movement Axis Challenge Strategy/Theory

Purpose in Robotic System
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LT (Long Travel) / CT High-speed trajectory Phase Plane Theory, Input Smooth, predictable positioning and

(Cross Travel) tracking and load swing Shaping, Optimal Control residual vibration elimination
Load dynamics and Sliding-Mode Control (Robust | Robust handling of variable load

HT (Hoist Travel) damping, variable payload | Finite-Time), Hybrid Fuzzy weights and dynamic sway
mass Logic Control compensation

Collision Avoidance and Dynamic Window Approach

Overall 3D Movement Dynamic Pathfinding (TC-QWA), Vision-aided
Tracking

Real-time risk mitigation and path
optimization for enhanced safety 2

4. PERCEPTION AND ENVIRONMENTAL AWARENESS: COMPUTER VISION AND LOCALIZATION
The implementation of robotic crane capabilities is dependent on real-time, high-accuracy localization of the crane
components, the payload, and the surrounding environment, shifting control from simple position feedback to visual
servoing.

4.1. 3d Spatial Mapping and Crane Component Awareness

The initial step in vision-based control is the accurate computation of the camera’s extrinsic parameters—its position
and orientation relative to the crane structure. This is accomplished using classical computer vision methods, including
feature-based matching algorithms coupled with horizon line detection.* This process grounds the visual data within the
crane’s known kinematic coordinate system.

4.2. Deep Learning for Object and Crane Component Segmentation

To understand the dynamic state of the crane structure itself and the surrounding workspace, deep learning models are
deployed. A dfine model is utilized for instance segmentation, specifically targeting objects for pickup operations in
the workspace and crane components such as the jib and the hook. Accurate pixel-level segmentation of these features
allows the system to monitor the crane's structural geometry in real time. Following segmentation, a hybrid algorithm
combining contour extraction with a Mobile Line-Segment Detector (MLSD) is applied to reconstruct the geometric
features. This reconstruction is vital for providing the necessary geometric feedback, such as the jib rotation angle,
which can be estimated using a trained Backpropagation Neural Network (BPNN). Knowing the crane's precise physical
configuration aids in structural self-collision avoidance and provides essential measurements for refining the anti-sway
control models.

4.3. High-Precision Keypoint Mapping and Deep Visual Servoing (DVS)

High-precision Pick-and-Load operations require accurate, non-contact measurement of the target load’s position.
Traditional methods relying on fiducial markers are insufficient for unstructured industrial environments.® Therefore, the
system incorporates advanced keypoint detection using Convolutional Neural Networks (CNNs).

A modified VGG-19 CNN, initially pre-trained on the expansive ImageNet dataset, is refined to focus on extracting
keypoints that represent the corners of realistic objects.® This approach allows the system to overcome the limitations of
relying on arbitrary visual markers. Achieving the required industrial precision demands specialized AI/ML engineering
input, including architectural modifications to the base model, such as replacing max-pooling layers with average-
pooling, and implementing an adaptive learning rate schedule that decreases during training epochs.® These specific
modifications were found to reduce the validation loss by 50%, guaranteeing the high reliability and low Mean Absolute
Error necessary for industrial visual localization.®

The output of this CNN—real-time pixel coordinates of the payload's keypoints—is fed directly into the control loop via
Image-Based Visual Servoing (IBVS), a technique within the broader field of Deep Visual Servoing (DVS).° DVS
closes the control loop based on visual feedback, ensuring the convergence of the load’s visual feature error, thereby
enabling the crane to execute the final, precise placement required for collaborative or automated assembly tasks.

Table 2. Computer Vision Techniques for Key Point Mapping and Localization.

Primary Control Applicable Control

Movement Axis Challenge Strategy/Theory

Purpose in Robotic System

Copyright © 1JAE 2024
Corresponding Author’s E-mail ID: kishanrajoria@gmail.com

38



LT (Long Travel) / CT High-speed trajectory Phase Plane Theory, Input Smooth, predictable positioning and

(Cross Travel) tracking and load swing Shaping, Optimal Control residual vibration elimination
Load dynamics and Sliding-Mode Control - - .
HT (Hoist Travel) damping, variable (Robust Finite-Time), Hybrid Robust handling of variable load weights

payload mass Fuzzy Logic Control and dynamic sway compensation **

Collision Avoidance and Dynamic Window Approach

Overall 3D Movement Dynamic Pathfinding (TC-DWA), V_|S|0n-a|ded
Tracking

Real-time risk mitigation and path
optimization for enhanced safety 2

5. COLLABORATIVE OPERATIONS AND INDUSTRY 5.0 IMPLEMENTATION

5.1. Designing the Collaborative Workspace (Hri)

The core tenet of the robotic crane system’s operation is safe Human-Robot Interaction (HRI), realizing the Industry 5.0
vision. The system functions as a large-scale augmented tool, removing human workers from the hazardous path of
heavy loads and repetitive, high-force tasks.® This allows human personnel to focus on high-value cognitive tasks like
quality control or complex assembly. Furthermore, the system is designed for interoperability, allowing the macro-
positioning crane to safely interface with smaller, standard collaborative robots (cobots), such as the robolink modular
arms offered by component suppliers, or specialized handling systems like Mazak’s Ez LOADER series, which include
integrated vision sensors for fine-grained manipulation.*

5.2. Dynamic Safety Zone Management

To enable effective collaboration without physical safeguarding barriers, the crane must maintain real-time awareness of
the human presence and dynamically adjust its behavior.

Real-Time Risk lIdentification: The system utilizes the You Only Look Once version 8 (YOLOV8) instance
segmentation model to identify and locate dynamic risk factors within the operational path.? This includes accurately
identifying the precise positions of nearby workers and predefined potential drop zones, thus translating visual data
directly into safety-critical parameters.?

Dynamic Path Planning (TC-DWA): The real-time risk map generated by YOLOVS is fed into an improved Dynamic
Window Approach for Tower Cranes (TC-DWA). The TC-DWA algorithm dynamically plans the optimal operational
path, focusing on steering the suspended load away from detected high-risk areas.? This vision-informed, dynamic
approach represents a substantial leap in operational safety. Experimental scenarios have demonstrated that the TC-
DWA prototype can significantly reduce the average maximum collision times by 50% compared to conventional path
planning algorithms like Rapidly-exploring Random Tree (RRT) and Atrtificial Potential Field (APF).? This quantified
improvement in risk mitigation is the engineering justification for the adoption of this sophisticated computational
model in safety-critical environments.

5.3. Adherence to Collaborative Safety Standards

The collaborative functionality is strictly governed by international safety standards, primarily 1SO 10218:2025 (Parts 1
and 2), which integrates former technical specifications for human-robot collaboration (ISO/TS 15066).6 Adherence to
this framework dictates specific functional safety requirements that must be integrated into the Safety PLC architecture:
1. Safety-Rated Monitored Stop (SMS): The system must immediately transition the crane to a safe stopped state if a
human breaches the defined collaborative workspace boundary.

2. Speed and Separation Monitoring (SSM): Utilizing the high-fidelity 3D data from LiDAR and vision systems 12,
the SSM function dynamically reduces the crane's operational speed proportionally to the minimum separation distance
between the moving load/structure and the nearest worker, ensuring safe coexistence.

3. Obstacle and Collision Avoidance Systems: The safety controls integrate proprietary Obstacle Avoidance and
Collision Avoidance Systems, extensively tested for proof of concept in laboratory settings before deployment to ensure
reliability and compliance.

6. PERFORMANCE VALIDATION AND COMPARATIVE ASSESSMENT

6.1. Robaotics Evaluation Framework (Safety, Quality, Schedule, Cost)

To rigorously validate the success of the robotic testbed against traditional manual methods or theoretical models, a
comprehensive robotics evaluation framework is applied.'® This framework moves beyond simple throughput metrics to
encompass quantifiable analysis across four dimensions: Safety (collision avoidance effectiveness), Quality (positional
precision), Schedule (consistent cycle time), and Cost (efficiency of the control strategy).

6.2. Quantifiable Improvements in Safety and Risk Mitigation

The most immediate and critical performance gain is the enhanced demonstration of safety protocols. Traditional
crane operations inherently carry safety risks related to poor judgment or path planning, potentially causing severe
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accidents.? The robotic system mitigates this risk by achieving continuous, real-time risk assessment via computer
vision and dynamic planning. The adoption of the TC-DWA path planning model demonstrates a significant reduction
in risk factors, specifically reducing the risk of dropped loads affecting ground workers and important equipment,
leading to quantifiable reductions in exposure incidents.? The system’s foundational compliance with safety standards
and the deployment of integrated safety PLCs further ensures that operations maintain a demonstrably low safety risk
level.

6.3. Precision and Throughput (Quality and Schedule Metrics)

Precision: The implementation of Deep Visual Servoing (DVS) combined with high-performance anti-sway control
algorithms allows the robotic crane to achieve high positional accuracy and repeatability that is unattainable through
manual operation.® The system consistently targets and achieves millimeter-level placement, essential for automated
Pick-and-Load tasks that interface with high-tolerance manufacturing processes.

Throughput Consistency: The use of optimized S-curve trajectories and complex non-linear controllers ensures that
cycle times are highly consistent and predictable. This elimination of human variability in acceleration, deceleration,
and sway compensation translates directly to improved throughput and predictability in production schedules.*
Furthermore, the system’s high operational reliability, supported by condition monitoring systems (i.Sense/i.Cee) &,
minimizes unplanned service interruptions, positively impacting the overall manufacturing schedule.

Table 3. Comparison of Conventional vs. Robotic Crane Performance Metrics.

. Primary Control Applicable Control . .
Movement Axis Challenge Strategy/Theory Purpose in Robotic System
LT (Long Travel) / CT High-speed trajectory Phase Plane Theory, Input ai??ggir]dugrle\?ilg:zgIc?npe?lmi?]r:t?gn
(Cross Travel) tracking and load swing Shaping, Optimal Control 1
Load dynamics and Sliding-Mode Control (Robust Robust handling of variable load
HT (Hoist Travel) damping, variable payload Finite-Time), Hybrid Fuzzy weights and dynamic sway
mass Logic Control compensation !
. . Dynamic Window Approach . . T
Collision Avoidance and - - Real-time risk mitigation and path
Overall 3D Movement Dynamic Pathfinding (TC'DW.'If‘r‘ ;,C?(/ilr&];éon-alded optimization for enhanced safety 2

7. CONCLUSION AND FUTURE DEVELOPMENT TRAJECTORIES

7.1. Synthesis of Technical Achievements

The design and implementation of the laboratory-scale robotic crane prototype successfully integrate cutting-edge
control theory and deep learning perception to automate and optimize Hoist Travel (HT), Long Travel (LT), and Cross
Travel (CT) operations. The system's technical achievement lies in the seamless fusion of robust, non-linear anti-sway
control algorithms (including Sliding Mode and Hybrid Fuzzy Logic methods) with high-fidelity computer vision
frameworks (Mask-RCNN, CNN-based keypoint mapping). This integration enables Deep Visual Servoing (DVS) for
millimeter-level precision and facilitates the adoption of dynamic, vision-informed path planning (TC-DWA), resulting
in substantial, quantifiable improvements in both precision and operational safety, particularly in collaborative
workspaces.

7.2. Economic and Operational Outlook

The operational outlook is characterized by enhanced efficiency and long-term cost savings. By achieving consistent,
optimized cycle times and allowing for unmanned continuous operation, productivity is significantly boosted. The
integration of predictive maintenance systems ensures maximal uptime by proactively addressing mechanical wear,
mitigating the high cost associated with unexpected failure of critical components.® Crucially, the proven effectiveness
of the dynamic safety protocols (TC-DWA reducing collision risk by 50%) translates directly into reduced liability,
insurance costs, and lost work time related to safety incidents, further bolstering the economic justification for the
robotic system.? The shift to an Industry 5.0 framework reallocates human resources to higher-value, non-repetitive
tasks, maximizing the strategic utility of the workforce.®

7.3. Next Steps for Full-Scale Industrial Deployment

Future development trajectories must focus on achieving maximum robustness under real-world industrial variability.
This includes refining the computational efficiency of the vision processing pipeline to ensure DVS can maintain high
update rates even during maximum dynamic motion. Furthermore, expanding the training dataset for the keypoint
mapping CNN is necessary to ensure reliable performance across a wider spectrum of industrial object shapes, varied
lighting conditions, and cluttered environments. Continued testing of the anti-sway control systems under maximum
load capacity and environmental disturbances (e.g., wind in semi-outdoor settings) will be required to fully validate

asymptotic convergence properties before widespread industrial deployment.
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