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    Abstract- Air pollution has become one of the most critical environmental and public health challenges worldwide, driven by 

rapid urbanization, industrial expansion, transportation growth, and changing climatic conditions. Accurate forecasting of air 

pollutant concentrations is essential for informed policy decisions, emission control strategies, and public health protection. This 

review examines the evolution of air pollution forecasting techniques, beginning with traditional statistical approaches and 

advancing toward modern data-driven deep learning methodologies. Classical models such as ARIMA, Multiple Linear Regression, 

and Kalman Filtering are noted for their interpretability and effectiveness under stable conditions, yet they struggle to represent 

nonlinear atmospheric behavior. Machine learning techniques, including Support Vector Machines, Random Forests, and Artificial 

Neural Networks, improved performance by capturing multivariate dependencies but still lacked the ability to model temporal 

dynamics effectively. Recent advancements in deep learning, particularly hybrid architectures combining convolutional networks 

for feature extraction with recurrent frameworks for sequential learning, have demonstrated superior predictive accuracy by 

capturing complex pollutant–meteorological interactions. However, challenges remain, including limited data quality, high 

computational cost, model interpretability concerns, and difficulties in real-time implementation. This review highlights current 

achievements, identifies methodological gaps, and emphasizes the need for scalable, explainable, and robust forecasting systems 

adaptable to diverse geographic and climatic conditions. 
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I. INTRODUCTION 

One of the most urgent environmental and societal health problems of the 21 st century is air pollution brought about by 

the fast industrialization, urbanization, automobile emission, and the growing energy requirements. The constant increase in 

the concentration of air pollutants like particulate matter (PM2.5 and PM10), nitrogen dioxide (NO 2), sulfur dioxide (SO 2), 

carbon monoxide (CO), and ozone (O 3) has an enormous implication on human health, ecological balance, climate change, 

and the general quality of life. Several epidemiological reports have evidenced a high level of correlation between the long 

term exposure to polluted air and the onset of serious respiratory diseases, cardiovascular diseases, neurological weakness 

and even early death. With the increasing population and economic activities in the cities, the ability to predict the level of air 

pollution has been of great importance to the policymakers, environmental agencies and the populace in general. Proper and 

prompt predictions enable the governments to give early warnings, develop regulatory interventions, streamline traffic 
movement, and eradicate dangers associated with pollution. Nevertheless, it is intrinsically difficult to forecast the air quality 

because of the dynamic interplay of the meteorological factors, sources of emissions, chemical processes, and geographically 

diverse factors [1]-[4]. 

 

Fig. 1 Causes of Air pollution [5] 
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 Classical machine learning approaches and traditional statistical techniques often fail to describe these nonlinear temporal 

relationships, spatial heterogeneity and multivariate relationships found in atmospheric pollutant data. Over the last few 

years, the development of deep learning has introduced new possibilities to create highly efficient predictive models that are 

able to learn complex patterns using large amounts of data in the environment. When used in a 1D format (1D ConvNets), 

convolutional neural networks (CNNs) which were originally created as image processors have demonstrated good 
performance in extracting deep spatial and structural features out of sequential numerical data. Equivalently, recurrent neural 

network (RNN) versions, specifically, Gated Recurrent Units (GRU) and Bidirectional GRU (BiGRU) are very proficient at 

long-run temporal dependencies of time-series data, owing to their ability to process sequences forward and backward. The 

combination of 1D convolutional layers with Bidirectional GRU network can provide a potent hybrid deep learning model 

that will apply the advantages of two architectures: 1D ConvNets will most effectively extract local pattern of trends and 

short-term variability of pollutant concentration sequences, whereas the BiGRU component will effectively learn time-

dependent features since it will be able to learn both past and present states in parallel. A hybrid architecture such as this is 

thus more holistic and robust in its prediction than single model approaches. The combination of the meteorological variables 

like temperature, humidity, speed of wind, atmospheric pressure, and season aspects also add to the input representation of 

the model in the air pollution forecasting context and help the model to be effective in generalizing the environmental 

conditions across different conditions. Besides, the capability of deep learning models to learn raw data will decrease the 

reliance on the domain-specific feature engineering, enhance the scaling and transferability of the model to cities and regions 
with varying pollution processes. Many research works have confirmed the high performance of hybrid deep learning models 

in time-series prediction tasks in environmental forecasting, energy demand forecasting and financial trend forecasting [6] -

[8].  

One recommendation that can be offered in this regard is a deep learning model consisting of 1D ConvNets and 

Bidirectional GRU since it does not only process large multidimensional data but also tackles problems such as overfitting, 

vanishing gradients, and limited long sequence memory. The proposed framework works under the principle of applying 1D 

convolutional filters to extract important temporal characteristics in the trends of pollutant concentrations and injecting the 
learnt characteristics into BiGRU units to gain a better understanding of the sequential relationships. The bidirectional 

structure makes sure that the model takes into consideration the connection of every time step with the past and future time 

point which is crucial in the representation of temporal pollutant formation processes that depend on atmospheric reactions 

and external emission variations. Moreover, the architecture can be also improved with the introduction of normalization, 

dropout regularization, and adaptive learning optimizer to enhance the model stability and generalization. The higher 

computational capabilities of the current deep learning models allow the implementation of these forecasting models into 

real-time monitoring systems, enabling the use of smart cities applications, air quality management portals, and IoT-based 

environmental surveillance systems. In addition to the role of pollution forecasting in the management of health and the 

environment, precise pollution forecasting will be used to reduce the burden of the economy and make the right decisions in 

transportation, preparedness to health, industry control, and community awareness initiatives. With the increased attention to 

the problem of air pollution in the whole world, the creation of intelligent forecasting systems using deep learning algorithms 

is not just a technical task but also a social need. ConvNets combined with Bidirectional GRU into a single predictive 
framework is a first-time move in the right direction towards having high-resolution, dependable and versatile forecasting 

solutions that can address the rapidly changing circumstances in the urban environment. Therefore, this paper is aimed at 

designing, developing, and assessing a high-quality deep learning based air pollution predictor model that makes use of the 

synergetic potential of 1D convolutional neural networks and bidirectional gated recurrent units in offering practical, precise, 

and real-time forecasts that can ultimately result in improved environmental sustainability and protection against diseases.[9]. 

II. LITERATURE REVIEW 

He 2025 et.al Pollution of the air in industrial areas is a serious environmental and human health issue, especially in the 

fast-growing regions, requiring the use of good predicting systems to aid in reducing the situation. He et al. (2025) developed 

a hybrid model Transformer times Net, which is optimized using the Optuna algorithm to predict six key air pollutants in the 

Xinyang Industrial Zone in China. The model takes advantage of the fact that the Transformer is capable of learning long-

range temporal dependencies and TimesNet of learning complex periodic structure in time series. Based on air quality data of 
20192023, the hybrid strategy showed greater predictive power than the traditional statistical, machine learning, and deep 

learning models and provides a useful instrument in the policy planning and pollution control. [10]. 

Dairi 2025 et.al solved the increasing global health problem with air pollution by introducing a forecasting model based 

on deep learning that can enhance the prediction of ambient pollutants. Their approach combines Variational Autoencoders 

(VAE) with an Innovative Multiple Directed Attention (IMDA) mechanism and creates the IMDA-VAE architecture. The 

model was tested on the dataset of four states of the U.S. and measured by six statistical measures of accuracy. It was found 

that IMDA-VAE performed better than traditional models, including LSTM, GRU, BiLSTM, BiGRU and ConvLSTM. The 

paper brings out the success of integrating the attention process to improve the temporal pattern of pollutants learning and 

predictability across different sites. [11]. 
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Oldenburg 2024 et.al carried out a proof-of-concept analysis to predict concentrations of important pollutants, such as NO 

2, O 3, PM 10 and PM 2.5, based on multivariate time-series data and meteorological variables at two sites. The researcher 

has contrasted various deep learning models with more focus on LSTM and GRU. A multi-task learning structure was 

introduced that was hierarchical and reflected the behavior of the atmosphere and relationship between different pollutants. 

The hierarchical GRU proved to be the most efficient and accurate (in terms of forecasting) of the tested models. The results 
indicate that hierarchical temporal modeling has the ability to improve prediction performance of smog related air quality 

indicators as well as the capacity to capture complex interaction of pollutants.[12]. 

Soulie 2024 et.al concerned itself with the enhancement of worldwide emission inventory necessary to model the air 

quality and predict atmospheric composition. The paper presented CAMS-GLOB-ANT which is a high-resolution global 

efforts dataset of 36 pollutants across 17 anthropogenic sectors between the year 2000 and 2023. The inventory gives monthly 

data on a 0.1° 0.1 X grid that can be used in both regional and global atmospheric model. The consistency of the dataset was 

established through methodological transparency and comparisons with already existing inventories and made the dataset 

appropriate in the research and operational modeling. This study plays a major role in comprehending the long term emission 
patterns and also increases the credibility of atmospheric chemical transport models applied to policy and climate analysis. 

[13]. 

Africa 2024 et.al Investigated macroeconomic effects of air pollution in Hungary with the help of the economic modeling 

process based on the Cobb-Douglas production function and Solow-Swan model of growth. The analysis measured the 

economic performance in the country due to health impairment brought about by pollution, especially the productive labor 

force. It was found that over the next fifty years, air pollution may lower GDP by 4.1-9.4 per cent every year, which will be 

accompanied by increasing healthcare spending. This study highlights that not only is the enhancement of air quality a 
priority of the people, but also a critical economic investment. Less pollution leads to a direct sustainable development in the 

long term and the resilience of the national economy [14]. 

TABLE: 1.LITERATURE SUMMARY 

Authors / Year Methodology Research Gap Identified Key Findings 

Yue et al., 2024 [15] Scenario-based projections using 

PM2.5 datasets from 11 global climate 

models under Shared Socioeconomic 

Pathways (SSPs). 

Existing projections lack precision in 

linking air quality improvements with 

actionable urban emission control 

strategies and localized forecasting 

models. 

Even optimistic sustainability-driven 

pathways fail to fully meet SDG 3.9; 

aggressive regional mitigation and 

accurate forecasting are essential. 

Nitinattrakul & 

Lalitaporn, 2023 [16] 

Comparative analysis of ground-based 

air quality stations and satellite-derived 

pollution datasets during COVID-19 

lockdown phases. 

Forecasting frameworks often ignore 

period-specific activity disruptions and 

seasonal climate influences on 

pollution. 

Pollution levels fell during lockdown due 

to reduced mobility, but seasonal climatic 

factors still caused variation — 

demonstrating the dynamic nature of 

pollution systems. 

Vitali et al., 2023 [17] Development of standardized 

evaluation and benchmarking 

procedures for short-term air quality 

forecasting models across Europe. 

Lack of common validation 

benchmarks makes it difficult to 

compare performance across 

forecasting models and regions. 

Proposed benchmark-based model 

evaluation improves transparency, 

comparability, and policy decision 

support in environmental forecasting 

systems. 

Soleimanpour & 

Alizadeh, 2023 [18] 

Long-term climate reanalysis using 

ERA5 and MERRA-2 datasets to assess 

planetary boundary layer height and 

ventilation effects on PM2.5. 

Previous forecasting models rarely 

incorporate boundary layer dynamics 

and long-term climatic variability, 

which strongly affect pollution levels. 

Winter pollution is highest due to shallow 

PBLH; gradual climate warming may 

marginally improve ventilation, 

influencing long-run pollution patterns. 

Ghose & Anthopoulos, 

2022 [19] 

Designed a Hybrid 1D-CNN + BiGRU 

deep learning model with missing data 

handling for AQI forecasting in smart 

cities. 

Need for models that jointly capture 

spatial correlations and temporal 

dependencies in pollution time-series 

while maintaining robustness to missing 

values. 

Hybrid 1D-CNN + BiGRU model 

provided superior forecasting accuracy 

compared to standalone DL models, 

proving effectiveness of integrated 

architectures. 

 

III. UNDERSTANDING AIR POLLUTION DYNAMICS 

Air pollution is a complex environmental issue that occurs when the combination of natural and man-made objects alters 

the amount or distribution and transformation of impurities in the air. There are the emission sources, atmospheric processes, 

weather conditions, geographic features, all of which contribute to changing air pollution with time. Some of the natural 

causes are dust storms, volcanic activity, forest fires, and discharge of pollen. Vehicle emissions, industrial activities, burning 

fossil fuels, burning garbage, and building work are some of the key causes which are made by humans. Some of the most 

significant air pollutants include particulate matter (PM2.5 and PM10), nitrogen dioxide (NO 2), sulfur dioxide (SO 2), 
carbon monoxide (CO), ozone (O 3 ), ammonia (NH 3 ) and several volatile organic compounds (VOCs). On the air, these 

pollutants are capable of chemically and physically reacting with one another. This has the potential to create other types of 

pollutants known as the secondary pollutants, including ground level ozone and the secondary particulate matter, which can 

be even more harmful than the original emissions. [20]. 
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Weather conditions have a significant influence on pollutant dispersion and accumulation since temperature, humidity, 

speed of wind, air pressure, and rainfall are significant factors. As an example, pollutants cannot be distributed much when 

the wind is less in strength, and temperature inversion makes pollutants near the surface, which may result in smog. Seasonal 

variations are also very significant. As an example, in the winter season, the levels of pollution are typically greater due to an 

increased amount of heat consumed by people, lesser mixing of air, and stagnant air. The role of geographic considerations is 
also involved. As an illustration, cities bordered by mountains or those in the lowland regions can experience reduced airflow 

thus making the pollutants remain in the air. In addition, variations in air pollution with time are different at varying times. 

An hourly change could be brought about by change in traffic or industry, a daily or seasonal change could be brought about 

by weather and human habits. Some chemical reactions of the pollutants also require time, in particular, the ones which are 

the result of sunshine, like the formation of ozone of other chemicals. Due to the interaction of many components that are 

continuously varying, air pollution is extremely difficult to predict due to the distortion of its concentrations which vary 

nonlinearly. You should be able to understand these dynamics so that you can develop good forecasting models with the 

ability to capture time patterns, variability across regions and a complex behaviour of pollutants. It has become increasingly 

popular with advanced models of computation, particularly deep learning models, which are capable of revealing hidden 

relationships in large and multivariate datasets of the environment. With a combination of historical pollution data and 

weather factors, these types of models can identify trends and relationships that are difficult to identify by traditional 

statistical techniques. This will enable more precise predictions and intelligent environmental management.[21], [22], [23]. 

IV. TRADITIONAL STATISTICAL AND MACHINE LEARNING APPROACHES 

Long time air pollution level prediction relied on diverse statistical as well as classical machine learning models which 

attempt to model changes in concentrations of pollutants with time. Some of the initial techniques included Autoregressive 

Integrated Moving Average (ARIMA), Multiple Linear Regression (MLR) and Kalman Filtering since they were easy to use 

and understand. ARIMA models achieve the best results in the case of short term predictions when the levels of pollution are 

consistent between seasons or in cycles. Yet their greatest failure is that they cannot faithfully reflect nonlinear associations 

or unpredictable variations in air quality in reaction to the varying weather or unpredictable emissions. Also, the regression-

based techniques presuppose that there is a straight-line relation between variables, which is not necessarily there in the 

changing atmospheric interactions[24], [25], [26], [27], [28]. The increasing popularity of machine learning models such as 

Support Vector Machines (SVM), Random Forest (RF), Artificial Neural Networks (ANN), and k-Nearest Neighbors (kNN) 

are increasingly being used by more and more people as computers become more intelligent at their tasks. The models are 
more robust when addressing nonlinear relationships and multivariate relationships and therefore are more accurate in 

prediction of things as compared to the traditional statistical methods. SVM is, say, a useful method when dealing with a ver y 

dimensional dataset and it is insensitive to outliers. Prediction by Random Forest, however, is more reliable since the several 

decision trees were combined to prevent overfitting. Introduction ANN-based models added the feature of modeling intricate 

dependencies between pollutants and meteorological parameters, but usually require huge training sets and parameter 

optimization. Despite these technologies, the temporal relationships which are induced within air pollution time-series data 

are frequently difficult to learn using typical machine learning models. They typically examine the input values in sequence 

and they lack mechanisms to detect the occurrence of trends. Due to this, their prediction capabilities might be impaired in 

cases where they are required to make predictions over a long time or in weather with a rapidly changing character. Such 

issues gave rise to the shift to deep learning-based algorithms, particularly the recurrent neural network (RNN), Long Short-

Term Memory (LSTM) network, and the Gated Recurrent Unit (GRU), which are designed with the express purpose of 

modeling sequential dependencies [29], [30], [31]. 

TABLE 1. COMPARISON OF TRADITIONAL STATISTICAL AND CLASSICAL ML MODELS FOR AIR POLLUTION FORECASTING 

Model Type Example Models Key Strengths Major Limitations 

Statistical Models ARIMA, MLR, 

Kalman Filter 

Simple, interpretable, good for short-term 

stable trends 

Poor handling of nonlinearity, limited 

adaptability to rapid changes 

Machine Learning 

Models 

SVM, Random 

Forest, ANN, kNN 

Better modeling of nonlinear and 

multivariate relationships, higher 

accuracy 

Lack of temporal dependency modeling, 

sensitive to data volume and parameter tuning 

 

The table presents the key differences between the classical and statistical machine learning models. The statistical 

models are effective where the pollutants act in a stable manner, but not in a dynamic atmospheric condition. Machine 
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learning models are improved in nonlinearity and multiple-feature learning, yet even they are not able to capture fully 

sequential patterns. It is the reason why more developed deep learning architectures are required. 

V. ADVANCEMENTS IN DEEP LEARNING AND HYBRID ARCHITECTURES 

Recent improvements in deep learning have created a profound shift in the predictive models of atmospheric and 

environmental time-series modeling, as well as air pollution forecasting. Conventional machine learning models tend to be 
inefficient in modeling nonlinearity, time-varying performance of pollutant concentrations due to meteorological conditions 

and variable emissions. On the other hand, the idea with deep learning models is that they are programmed to learn complex 

patterns of features, temporal relationships and hidden dependencies through raw or minimally processed data and achieve 

significant gains in predictive performance and generalization. [32]. 

 

Fig. 2 CNN Architecture 

Deep Learning for Capturing Nonlinear Atmospheric Behavior Air pollution forecasting needs the models, which will be 

able to deal with the nonlinear and highly dynamic relations between pollutants concentrations and meteorological 
conditions. This is especially appropriate in deep learning models that are able to learn hidden features and complicated 

temporal dependencies based on raw data. In contrast to classical models that are based on extensive use of handcrafted 

feature engineering, deep learning models are used to analysis multivariate time-series data to identify patterns associated 

with the pollutant trends, sources of emission, and seasonal impacts, as well as boundary-layer changes in the atmosphere. 

Deep learning can be a very potent tool in environmental monitoring because it is capable of modeling nonlinearity and 

uncertainty.[33]. 

Role of Convolutional Neural Networks (CNNs) in Feature Extraction Conventional Neural Networks (CNNs), 

particularly 1D CNNs, have been found to be very useful in the field of environmental time-series. They can be used to 
identify the localized temporal properties of sudden spikes in emissions, short-period of time pollution accumulation, and 

diurnal variation tendencies by applying filters to continuous chains of pollutant and meteorological data that simplify input 

complexity. This renders them a perfect front-end feature extractor to hybrid forecasting architectures which demand 

powerful initial data representation. 

1. Recurrent Neural Network Variants for Modeling Sequential Dependencies The purpose of recurrent Neural Networks 

(RNNs) and their extended versions LSTM and GRU is to operate with sequential data when previous states affect the 

final results. LSTM networks address the problem of vanishing gradient and are able to capture long-duration temporal 

dependencies as opposed to GRUs, which train much faster and require fewer parameters with only minor performance 
degradation. Subsequent developments resulted in a Bidirectional LSTM (BiLSTM) and Bidirectional GRU (BiGRU) 

models that model sequences in both directions and therefore are able to encode the past and detect the future 

simultaneously. This two-way processing is very useful in the prediction of the pollutant formation cycles that are 

conditional on the change in atmospheric conditions [34]. 

2. Transformer-Based Models for Global Temporal Attention Recently, Transformer architectures, which include self-

attention, have become popular in air quality prediction. Transformers are not based on sequential processing of data and 

are able to directly learn long-range temporal dependencies on large datasets. They are also better at forecasting with 

their capacity to prioritize significant time steps, especially with complicated seasonal and meteorological variations. 

Their complexity of computation renders them, however, too difficult to use in practice on a large scale in real-time [35]. 

3. Hybrid 1D CNN–BiGRU Models for Enhanced Prediction Performance The hybrid models combine the Congruence 

of CNNs and Bidirectional GRUs to determine higher forecasting precision. In these structures, 1D CNN layers extract 

meaningful time and trend-related features and the representations obtained are transferred to BiGRU layers to acquire 

contextual temporal patterns. This combination has an increased level of robustness, lower levels of noise sensitivity, and 

further information about the behavior of pollutants over time. Therefore, crossbreed deep learning models are the best 

prospects of creating precise, consistent, and scalable air pollution prediction models. [36]. 

VI. CHALLENGES AND LIMITATIONS 
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Despite the fact that forecasting models based on deep learning have shown substantial progress in terms of modeling 

intricate pollutant dynamics and patterns across time, a number of challenges and limitations still extend their performance, 

practical application, and generalizability. These limitations can only be understood on how to enhance further research and 

how to enhance the reliability of models within the real life system of environmental monitoring[37]. 

1. Data Quality and Availability Constraints The accessibility and quality of quality datasets are considered as one of the 

most important issues in the air pollution forecasting. Most monitoring stations have an intermittent reporting, lost 

values, sensor noise, equipment failure, or non-consistency in calibration. The scarcity of data is further amplified in the 

areas where there are fewer monitor networks, which results in less accurate models. The models of deep learning 

assume that the large, continuous and well-distributed datasets are essential to the successful training; hence, the lack of 

sufficient and high-quality data explicitly constrains the performance of prediction. Also, local differences in the source 

of emissions imply that the model that was trained in one territory might not be generalized to a different territory. 

2. High Sensitivity to Meteorological Variability Meteorological factors that include temperature, humidity, wind 

direction, and wind speed, and atmospheric pressure have a significant impact on the dynamics of air pollution. These 

parameters vary within short time scales and are usually nonlinear. Even when the deep learning models can be trained to 

capture time-dependent features, abrupt changes in the weather, the unexpected weather scenarios, or other seasonal 

deviations may result in serious forecasting mistakes. Such random changes necessitate an adaptive nature of models to 

capture them, and retraining, thus complicating computational and maintenance. [38]. 

3. Complexity in Model Training and Parameter Optimization Hybrid or multi-layered deep learning architectures have 

many hyperparameters including learning rate, the number of layers, and filter sizes, activation functions, and dropout 

ratios. It can be time-consuming to find the best combinations of them through lots of experimentation and computation. 
Inappropriate parameters can cause overfitting, underfitting or unstable training behavior. Moreover, deep learning 

models are computationally expensive and can run on specialized hardware (GPUs/TPUs), which makes them both 

difficult to deploy and resource-intensive to researchers and agencies [39]. 

4. Interpretability and Transparency Limitations Although the deep learning models provide better accuracy of 
prediction, the models are usually treated as black boxes, that is, the way the models make their decisions is hard to 

interpret. Such inability to be interpreted is problematic to policymakers and environmental scientists who would like to 

have clear models to warrant regulatory or mitigation action. Knowledge of the variables that have the most significant 

effect on pollution trends is essential to successful intervention planning but the complexity of deep learning makes 

simple interpretation unfeasible unless post-hoc explainability methods are used [40]. 

5. Scalability and Real-Time Deployment Challenges Real time air quality forecasting systems involve the 

implementation of models that are accurate as well as efficient in terms of the speed of inference. Multifaceted designs 

such as BiLSTM, BiGRU and Transformer-based models might require a lot of processing power, and thus, cannot be 

utilized in real-time contexts that require continuous implementation, particularly those constrained by resources. Also, 

the combination of live sensor data streams, anomalies, and stable operation of systems also makes large-scale 

deployment more challenging. [41]. 

VII. CONCLUSION 

This review has highlighted the continuous evolution of air pollution forecasting methods, demonstrating how the field 

has progressed from basic statistical approaches to more sophisticated deep learning and hybrid architectures. Traditional 

models such as ARIMA, Multiple Linear Regression, and Kalman Filtering provided initial frameworks for analyzing 

pollutant concentration trends, particularly under stable and predictable atmospheric conditions. However, their inability to 

accurately represent nonlinear interactions and rapidly changing environmental patterns limited their effectiveness in real-

world urban scenarios. Classical machine learning approaches, including Support Vector Machines, Random Forests, kNN, 

and Artificial Neural Networks, advanced prediction capability by capturing multivariate relationships more effectively, yet 

they still struggled to learn long-term temporal dependencies inherent in pollution time-series data. As highlighted in this 

review, recent advancements in deep learning have significantly improved forecasting accuracy by integrating automated 

feature extraction and sequential pattern learning. Hybrid models that combine convolutional neural networks with recurrent 

architectures, particularly GRU or LSTM variants, demonstrate substantial potential in capturing both localized emission 
spikes and long-term pollutant trends influenced by meteorological conditions. Nevertheless, challenges persist in terms of 

data availability, sensor inconsistencies, computational cost, interpretability, and real-time deployment needs. Therefore, 

future research should focus on developing scalable, adaptive, and explainable air pollution forecasting systems capable of 

operating reliably across diverse geographic and climatic settings. Enhanced data fusion methods, incorporation of satellite 

and IoT data streams, and interpretable deep learning frameworks will be essential to bridge the gap between high predictive 

accuracy and practical applicability. Ultimately, this review emphasizes the need for forecasting models that are not only 

precise but also transparent, efficient, and supportive of informed environmental policy and public health decision-making. 
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