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Abstract- Air pollution has become one of the most critical environmental and public health challenges worldwide, driven by
rapid urbanization, industrial expansion, transportation growth, and changing climatic conditions. Accurate forecasting of air
pollutant concentrations is essential for informed policy decisions, emission control strategies, and public health protection. This
review examines the evolution of air pollution forecasting techniques, beginning with traditional statistical approaches and
advancing toward modern data-driven deep learning methodologies. Classical models such as ARIMA, Multiple Linear Regression,
and Kalman Filtering are noted for their interpretability and effectiveness under stable conditions, yet they struggle to represent
nonlinear atmospheric behavior. Machine learning techniques, including Support Vector Machines, Random Forests, and Artificial
Neural Networks, improved performance by capturing multivariate dependencies but still lacked the ability to model temporal
dynamics effectively. Recent advancements in deep learning, particularly hybrid architectures combining convolutional networks
for feature extraction with recurrent frameworks for sequential learning, have demonstrated superior predictive accuracy by
capturing complex pollutant—-meteorological interactions. However, challenges remain, including limited data quality, high
computational cost, model interpretability concerns, and difficulties in real-time implementation. This review highlights current
achievements, identifies methodological gaps, and emphasizes the need for scalable, explainable, and robust forecasting systems
adaptable to diverse geographic and climatic conditions.

Keywords: Air pollution forecasting, Deep learning, 1D ConvNet, Bidirectional GRU, Time-series analysis, Hybrid neural networks,
Environmental monitoring

I INTRODUCTION

One of the most urgent environmental and societal health problems of the 21 st century is air pollution brought about by
the fast industrialization, urbanization, automobile emission, and the growing energy requirements. The constant increase in
the concentration of air pollutants like particulate matter (PM2.5 and PM10), nitrogen dioxide (NO 2), sulfur dioxide (SO 2),
carbon monoxide (CO), and ozone (O 3) has an enormous implication on human health, ecological balance, climate change,
and the general quality of life. Several epidemiological reports have evidenced a high level of correlation between the long
term exposure to polluted air and the onset of serious respiratory diseases, cardiovascular diseases, neurological weakness
and even early death. With the increasing population and economic activities in the cities, the ability to predict the level of air
pollution has been of great importance to the policymakers, environmental agencies and the populace in general. Proper and
prompt predictions enable the governments to give early warnings, develop regulatory interventions, streamline traffic
movement, and eradicate dangers associated with pollution. Nevertheless, it is intrinsically difficult to forecast the air quality
because of the dynamic interplay of the meteorological factors, sources of emissions, chemical processes, and geographically
diverse factors [1]-[4].
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Fig. 1 Causes of Air pollution [5]
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Classical machine learning approaches and traditional statistical techniques often fail to describe these nonlinear temporal
relationships, spatial heterogeneity and multivariate relationships found in atmospheric pollutant data. Over the last few
years, the development of deep learning has introduced new possibilities to create highly efficient predictive models that are
able to learn complex patterns using large amounts of data in the environment. When used in a 1D format (1D ConvNets),
convolutional neural networks (CNNs) which were originally created as image processors have demonstrated good
performance in extracting deep spatial and structural features out of sequential numerical data. Equivalently, recurrent neural
network (RNN) versions, specifically, Gated Recurrent Units (GRU) and Bidirectional GRU (BiGRU) are very proficient at
long-run temporal dependencies of time-series data, owing to their ability to process sequences forward and backward. The
combination of 1D convolutional layers with Bidirectional GRU network can provide a potent hybrid deep learning model
that will apply the advantages of two architectures: 1D ConvNets will most effectively extract local pattern of trends and
short-term variability of pollutant concentration sequences, whereas the BiGRU component will effectively learn time-
dependent features since it will be able to learn both past and present states in parallel. A hybrid architecture such as this is
thus more holistic and robust in its prediction than single model approaches. The combination of the meteorological variables
like temperature, humidity, speed of wind, atmospheric pressure, and season aspects also add to the input representation of
the model in the air pollution forecasting context and help the model to be effective in generalizing the environmental
conditions across different conditions. Besides, the capability of deep learning models to learn raw data will decrease the
reliance on the domain-specific feature engineering, enhance the scaling and transferability of the model to cities and regions
with varying pollution processes. Many research works have confirmed the high performance of hybrid deep learning models
in time-series prediction tasks in environmental forecasting, energy demand forecasting and financial trend forecasting [6] -

[8].

One recommendation that can be offered in this regard is a deep learning model consisting of 1D ConvNets and
Bidirectional GRU since it does not only process large multidimensional data but also tackles problems such as overfitting,
vanishing gradients, and limited long sequence memory. The proposed framework works under the principle of applying 1D
convolutional filters to extract important temporal characteristics in the trends of pollutant concentrations and injecting the
learnt characteristics into BiGRU units to gain a better understanding of the sequential relationships. The bidirectional
structure makes sure that the model takes into consideration the connection of every time step with the past and future time
point which is crucial in the representation of temporal pollutant formation processes that depend on atmospheric reactions
and external emission variations. Moreover, the architecture can be also improved with the introduction of normalization,
dropout regularization, and adaptive learning optimizer to enhance the model stability and generalization. The higher
computational capabilities of the current deep learning models allow the implementation of these forecasting models into
real-time monitoring systems, enabling the use of smart cities applications, air quality management portals, and 10T -based
environmental surveillance systems. In addition to the role of pollution forecasting in the management of health and the
environment, precise pollution forecasting will be used to reduce the burden of the economy and make the right decisions in
transportation, preparedness to health, industry control, and community awareness initiatives. With the increased attention to
the problem of air pollution in the whole world, the creation of intelligent forecasting systems using deep learning algorithms
is not just a technical task but also a social need. ConvNets combined with Bidirectional GRU into a single predictive
framework is a first-time move in the right direction towards having high-resolution, dependable and versatile forecasting
solutions that can address the rapidly changing circumstances in the urban environment. Therefore, this paper is aimed at
designing, developing, and assessing a high-quality deep learning based air pollution predictor model that makes use of the
synergetic potential of 1D convolutional neural networks and bidirectional gated recurrent units in offering practical, precise,
and real-time forecasts that can ultimately result in improved environmental sustainability and protection against diseases.[9].

1. LITERATURE REVIEW

He 2025 et.al Pollution of the air in industrial areas is a serious environmental and human health issue, especially in the
fast-growing regions, requiring the use of good predicting systems to aid in reducing the situation. He et al. (2025) developed
a hybrid model Transformer times Net, which is optimized using the Optuna algorithm to predict six key air pollutants in the
Xinyang Industrial Zone in China. The model takes advantage of the fact that the Transformer is capable of learning long-
range temporal dependencies and TimesNet of learning complex periodic structure in time series. Based on air quality data of
20192023, the hybrid strategy showed greater predictive power than the traditional statistical, machine learning, and deep
learning models and provides a useful instrument in the policy planning and pollution control. [10].

Dairi 2025 et.al solved the increasing global health problem with air pollution by introducing a forecasting model based
on deep learning that can enhance the prediction of ambient pollutants. Their approach combines Variational Autoencoders
(VAE) with an Innovative Multiple Directed Attention (IMDA) mechanism and creates the IMDA-VAE architecture. The
model was tested on the dataset of four states of the U.S. and measured by six statistical measures of accuracy. It was found
that IMDA-VAE performed better than traditional models, including LSTM, GRU, BiLSTM, BiGRU and ConvLSTM. The
paper brings out the success of integrating the attention process to improve the temporal pattern of pollutants learning and
predictability across different sites. [11].
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Oldenburg 2024 et.al carried out a proof-of-concept analysis to predict concentrations of important pollutants, such as NO
2, 0 3, PM 10 and PM 2.5, based on multivariate time-series data and meteorological variables at two sites. The researcher
has contrasted various deep learning models with more focus on LSTM and GRU. A multi-task learning structure was
introduced that was hierarchical and reflected the behavior of the atmosphere and relationship between different pollutants.
The hierarchical GRU proved to be the most efficient and accurate (in terms of forecasting) of the tested models. The results
indicate that hierarchical temporal modeling has the ability to improve prediction performance of smog related air quality
indicators as well as the capacity to capture complex interaction of pollutants.[12].

Soulie 2024 et.al concerned itself with the enhancement of worldwide emission inventory necessary to model the air
quality and predict atmospheric composition. The paper presented CAMS-GLOB-ANT which is a high-resolution global
efforts dataset of 36 pollutants across 17 anthropogenic sectors between the year 2000 and 2023. The inventory gives monthly
data on a 0.1° 0.1 X grid that can be used in both regional and global atmospheric model. The consistency of the dataset was
established through methodological transparency and comparisons with already existing inventories and made the dataset
appropriate in the research and operational modeling. This study plays a major role in comprehending the long term emission
patterns and also increases the credibility of atmospheric chemical transport models applied to policy and climate analysis.
[13].

Africa 2024 et.al Investigated macroeconomic effects of air pollution in Hungary with the help of the economic modeling
process based on the Cobb-Douglas production function and Solow-Swan model of growth. The analysis measured the
economic performance in the country due to health impairment brought about by pollution, especially the productive labor
force. It was found that over the next fifty years, air pollution may lower GDP by 4.1-9.4 per cent every year, which will be
accompanied by increasing healthcare spending. This study highlights that not only is the enhancement of air quality a
priority of the people, but also a critical economic investment. Less pollution leads to a direct sustainable development in the
long term and the resilience of the national economy [14].

TABLE: 1.LITERATURE SUMMARY

Authors/ Year

Methodology

Research Gap Identified

Key Findings

Yue et al., 2024 [15]

Scenario-based projections using
PM2.5 datasets from 11 global climate
models under Shared Socioeconomic
Pathways (SSPs).

Existing projections lack precision in
linking air quality improvements with
actionable urban emission control
strategies and localized forecasting
models.

Even optimistic sustainability-driven
pathways fail to fully meet SDG 3.9;
aggressive regional mitigation and
accurate forecasting are essential.

Nitinattrakul &
Lalitaporn, 2023 [16]

Comparative analysis of ground-based
air quality stations and satellite-derived
pollution datasets during COVID-19
lockdown phases.

Forecasting frameworks often ignore
period-specific activity disruptions and
seasonal climate influences on
pollution.

Pollution levels fell during lockdown due
to reduced mobility, but seasonal climatic
factors still caused variation —
demonstrating the dynamic nature of
pollution systems.

Vitali et al., 2023 [17]

Development of standardized
evaluation and benchmarking
procedures for short-term air quality
forecasting models across Europe.

Lack of common validation
benchmarks makes it difficult to
compare performance across
forecasting models and regions.

Proposed benchmark-based model
evaluation improves transparency,
comparability, and policy decision
support in environmental forecasting
systems.

Soleimanpour &
Alizadeh, 2023 [18]

Long-term climate reanalysis using
ERA5 and MERRA-2 datasets to assess
planetary boundary layer height and
ventilation effects on PM2.5.

Previous forecasting models rarely
incorporate boundary layer dynamics
and long-term climatic variability,
which strongly affect pollution levels.

Winter pollution is highest due to shallow
PBLH; gradual climate warming may
marginally improve ventilation,
influencing long-run pollution patterns.

Ghose & Anthopoulos,
2022 [19]

Designed a Hybrid 1D-CNN + BiGRU

deep learning model with missing data

handling for AQI forecasting in smart
cities.

Need for models that jointly capture
spatial correlations and temporal
dependencies in pollution time-series
while maintaining robustness to missing
values.

Hybrid 1D-CNN + BiGRU model
provided superior forecasting accuracy
compared to standalone DL models,
proving effectiveness of integrated
architectures.

1. UNDERSTANDING AIR POLLUTION DYNAMICS

Air pollution is a complex environmental issue that occurs when the combination of natural and man-made objects alters

the amount or distribution and transformation of impurities in the air. There are the emission sources, atmospheric processes,
weather conditions, geographic features, all of which contribute to changing air pollution with time. Some of the natural
causes are dust storms, volcanic activity, forest fires, and discharge of pollen. Vehicle emissions, industrial activities, burning
fossil fuels, burning garbage, and building work are some of the key causes which are made by humans. Some of the most
significant air pollutants include particulate matter (PM2.5 and PM10), nitrogen dioxide (NO 2), sulfur dioxide (SO 2),
carbon monoxide (CO), ozone (O 3 ), ammonia (NH 3 ) and several volatile organic compounds (VOCs). On the air, these
pollutants are capable of chemically and physically reacting with one another. This has the potential to create other types of
pollutants known as the secondary pollutants, including ground level ozone and the secondary particulate matter, which can
be even more harmful than the original emissions. [20].
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Weather conditions have a significant influence on pollutant dispersion and accumulation since temperature, humidity,
speed of wind, air pressure, and rainfall are significant factors. As an example, pollutants cannot be distributed much when
the wind is less in strength, and temperature inversion makes pollutants near the surface, which may result in smog. Seasonal
variations are also very significant. As an example, in the winter season, the levels of pollution are typically greater due to an
increased amount of heat consumed by people, lesser mixing of air, and stagnant air. The role of geographic considerations is
also involved. As an illustration, cities bordered by mountains or those in the lowland regions can experience reduced airflow
thus making the pollutants remain in the air. In addition, variations in air pollution with time are different at varying times.
An hourly change could be brought about by change in traffic or industry, a daily or seasonal change could be brought about
by weather and human habits. Some chemical reactions of the pollutants also require time, in particular, the ones which are
the result of sunshine, like the formation of ozone of other chemicals. Due to the interaction of many components that are
continuously varying, air pollution is extremely difficult to predict due to the distortion of its concentrations which vary
nonlinearly. You should be able to understand these dynamics so that you can develop good forecasting models with the
ability to capture time patterns, variability across regions and a complex behaviour of pollutants. It has become increasingly
popular with advanced models of computation, particularly deep learning models, which are capable of revealing hidden
relationships in large and multivariate datasets of the environment. With a combination of historical pollution data and
weather factors, these types of models can identify trends and relationships that are difficult to identify by traditional
statistical techniques. This will enable more precise predictions and intelligent environmental management.[21], [22], [23].

AVA TRADITIONAL STATISTICAL AND MACHINE LEARNING APPROACHES

Long time air pollution level prediction relied on diverse statistical as well as classical machine learning models which
attempt to model changes in concentrations of pollutants with time. Some of the initial techniques included Autoregressive
Integrated Moving Average (ARIMA), Multiple Linear Regression (MLR) and Kalman Filtering since they were easy to use
and understand. ARIMA models achieve the best results in the case of short term predictions when the levels of pollution are
consistent between seasons or in cycles. Yet their greatest failure is that they cannot faithfully reflect nonlinear associations
or unpredictable variations in air quality in reaction to the varying weather or unpredictable emissions. Also, the regression-
based techniques presuppose that there is a straight-line relation between variables, which is not necessarily there in the
changing atmospheric interactions[24], [25], [26], [27], [28]. The increasing popularity of machine learning models such as
Support Vector Machines (SVM), Random Forest (RF), Artificial Neural Networks (ANN), and k-Nearest Neighbors (KNN)
are increasingly being used by more and more people as computers become more intelligent at their tasks. The models are
more robust when addressing nonlinear relationships and multivariate relationships and therefore are more accurate in
prediction of things as compared to the traditional statistical methods. SVM is, say, a useful method when dealing with a very
dimensional dataset and it is insensitive to outliers. Prediction by Random Forest, however, is more reliable since the several
decision trees were combined to prevent overfitting. Introduction ANN-based models added the feature of modeling intricate
dependencies between pollutants and meteorological parameters, but usually require huge training sets and parameter
optimization. Despite these technologies, the temporal relationships which are induced within air pollution time-series data
are frequently difficult to learn using typical machine learning models. They typically examine the input values in sequence
and they lack mechanisms to detect the occurrence of trends. Due to this, their prediction capabilities might be impaired in
cases where they are required to make predictions over a long time or in weather with a rapidly changing character. Such
issues gave rise to the shift to deep learning-based algorithms, particularly the recurrent neural network (RNN), Long Short-
Term Memory (LSTM) network, and the Gated Recurrent Unit (GRU), which are designed with the express purpose of
modeling sequential dependencies [29], [30], [31].

TABLE 1. COMPARISON OF TRADITIONAL STATISTICAL AND CLASSICAL ML MODELS FOR AIR POLLUTION FORECASTING

Model Type Example Models Key Strengths Major Limitations
Statistical Models ARIMA, MLR, Simple, interpretable, good for short-term Poor handling of nonlinearity, limited
Kalman Filter stable trends adaptability to rapid changes
Machine Learning SVM, Random Better modeling of nonlinear and Lack of temporal dependency modeling,
Models Forest, ANN, kNN multivariate relationships, higher sensitive to data volume and parameter tuning
accuracy

The table presents the key differences between the classical and statistical machine learning models. The statistical
models are effective where the pollutants act in a stable manner, but not in a dynamic atmospheric condition. Machine
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learning models are improved in nonlinearity and multiple-feature learning, yet even they are not able to capture fully
sequential patterns. It is the reason why more developed deep learning architectures are required.

V. ADVANCEMENTS IN DEEP LEARNING AND HYBRID ARCHITECTURES

Recent improvements in deep learning have created a profound shift in the predictive models of atmospheric and
environmental time-series modeling, as well as air pollution forecasting. Conventional machine learning models tend to be
inefficient in modeling nonlinearity, time-varying performance of pollutant concentrations due to meteorological conditions
and variable emissions. On the other hand, the idea with deep learning models is that they are programmed to learn complex
patterns of features, temporal relationships and hidden dependencies through raw or minimally processed data and achieve
significant gains in predictive performance and generalization. [32].
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Deep Learning for Capturing Nonlinear Atmospheric Behavior Air pollution forecasting needs the models, which will be
able to deal with the nonlinear and highly dynamic relations between pollutants concentrations and meteorological
conditions. This is especially appropriate in deep learning models that are able to learn hidden features and complicated
temporal dependencies based on raw data. In contrast to classical models that are based on extensive use of handcrafted
feature engineering, deep learning models are used to analysis multivariate time-series data to identify patterns associated
with the pollutant trends, sources of emission, and seasonal impacts, as well as boundary-layer changes in the atmosphere.
Deep learning can be a very potent tool in environmental monitoring because it is capable of modeling nonlinearity and
uncertainty.[33].

Role of Convolutional Neural Networks (CNNs) in Feature Extraction Conventional Neural Networks (CNNSs),
particularly 1D CNNs, have been found to be very useful in the field of environmental time-series. They can be used to
identify the localized temporal properties of sudden spikes in emissions, short-period of time pollution accumulation, and
diurnal variation tendencies by applying filters to continuous chains of pollutant and meteorological data that simplify input
complexity. This renders them a perfect front-end feature extractor to hybrid forecasting architectures which demand
powerful initial data representation.

1. Recurrent Neural Network Variants for Modeling Sequential Dependencies The purpose of recurrent Neural Networks
(RNNs) and their extended versions LSTM and GRU is to operate with sequential data when previous states affect the
final results. LSTM networks address the problem of vanishing gradient and are able to capture long-duration temporal
dependencies as opposed to GRUs, which train much faster and require fewer parameters with only minor performance
degradation. Subsequent developments resulted in a Bidirectional LSTM (BiLSTM) and Bidirectional GRU (BiGRU)
models that model sequences in both directions and therefore are able to encode the past and detect the future
simultaneously. This two-way processing is very useful in the prediction of the pollutant formation cycles that are
conditional on the change in atmospheric conditions [34].

2. Transformer-Based Models for Global Temporal Attention Recently, Transformer architectures, which include self-
attention, have become popular in air quality prediction. Transformers are not based on sequential processing of data and
are able to directly learn long-range temporal dependencies on large datasets. They are also better at forecasting with
their capacity to prioritize significant time steps, especially with complicated seasonal and meteorological variations.
Their complexity of computation renders them, however, too difficult to use in practice on a large scale in real-time [35].

3. Hybrid 1D CNN-BiGRU Models for Enhanced Prediction Performance The hybrid models combine the Congruence
of CNNs and Bidirectional GRUs to determine higher forecasting precision. In these structures, 1D CNN layers extract
meaningful time and trend-related features and the representations obtained are transferred to BiGRU layers to acquire
contextual temporal patterns. This combination has an increased level of robustness, lower levels of noise sensitivity, and
further information about the behavior of pollutants over time. Therefore, crossbreed deep learning models are the best
prospects of creating precise, consistent, and scalable air pollution prediction models. [36].

VI. CHALLENGES AND LIMITATIONS
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Despite the fact that forecasting models based on deep learning have shown substantial progress in terms of modeling
intricate pollutant dynamics and patterns across time, a number of challenges and limitations still extend their performance,
practical application, and generalizability. These limitations can only be understood on how to enhance further research and
how to enhance the reliability of models within the real life system of environmental monitoring[37].

1. Data Quality and Availability Constraints The accessibility and quality of quality datasets are considered as one of the
most important issues in the air pollution forecasting. Most monitoring stations have an intermittent reporting, lost
values, sensor noise, equipment failure, or non-consistency in calibration. The scarcity of data is further amplified in the
areas where there are fewer monitor networks, which results in less accurate models. The models of deep learning
assume that the large, continuous and well-distributed datasets are essential to the successful training; hence, the lack of
sufficient and high-quality data explicitly constrains the performance of prediction. Also, local differences in the source
of emissions imply that the model that was trained in one territory might not be generalized to a different territory.

2. High Sensitivity to Meteorological Variability Meteorological factors that include temperature, humidity, wind
direction, and wind speed, and atmospheric pressure have a significant impact on the dynamics of air pollution. These
parameters vary within short time scales and are usually nonlinear. Even when the deep learning models can be trained to
capture time-dependent features, abrupt changes in the weather, the unexpected weather scenarios, or other seasonal
deviations may result in serious forecasting mistakes. Such random changes necessitate an adaptive nature of models to
capture them, and retraining, thus complicating computational and maintenance. [38].

3. Complexity in Model Training and Parameter Optimization Hybrid or multi-layered deep learning architectures have
many hyperparameters including learning rate, the number of layers, and filter sizes, activation functions, and dropout
ratios. It can be time-consuming to find the best combinations of them through lots of experimentation and computation.
Inappropriate parameters can cause overfitting, underfitting or unstable training behavior. Moreover, deep learning
models are computationally expensive and can run on specialized hardware (GPUs/TPUs), which makes them both
difficult to deploy and resource-intensive to researchers and agencies [39].

4. Interpretability and Transparency Limitations Although the deep learning models provide better accuracy of
prediction, the models are usually treated as black boxes, that is, the way the models make their decisions is hard to
interpret. Such inability to be interpreted is problematic to policymakers and environmental scientists who would like to
have clear models to warrant regulatory or mitigation action. Knowledge of the variables that have the most significant
effect on pollution trends is essential to successful intervention planning but the complexity of deep learning makes
simple interpretation unfeasible unless post-hoc explainability methods are used [40].

5. Scalability and Real-Time Deployment Challenges Real time air quality forecasting systems involve the
implementation of models that are accurate as well as efficient in terms of the speed of inference. Multifaceted designs
such as BiLSTM, BiGRU and Transformer-based models might require a lot of processing power, and thus, cannot be
utilized in real-time contexts that require continuous implementation, particularly those constrained by resources. Also,
the combination of live sensor data streams, anomalies, and stable operation of systems also makes large-scale
deployment more challenging. [41].

VII. CONCLUSION

This review has highlighted the continuous evolution of air pollution forecasting methods, demonstrating how the field
has progressed from basic statistical approaches to more sophisticated deep learning and hybrid architectures. Traditional
models such as ARIMA, Multiple Linear Regression, and Kalman Filtering provided initial frameworks for analyzing
pollutant concentration trends, particularly under stable and predictable atmospheric conditions. However, their inability to
accurately represent nonlinear interactions and rapidly changing environmental patterns limited their effectiveness in real-
world urban scenarios. Classical machine learning approaches, including Support Vector Machines, Random Forests, KNN,
and Artificial Neural Networks, advanced prediction capability by capturing multivariate relationships more effectively, yet
they still struggled to learn long-term temporal dependencies inherent in pollution time-series data. As highlighted in this
review, recent advancements in deep learning have significantly improved forecasting accuracy by integrating automated
feature extraction and sequential pattern learning. Hybrid models that combine convolutional neural networks with recurrent
architectures, particularly GRU or LSTM variants, demonstrate substantial potential in capturing both localized emission
spikes and long-term pollutant trends influenced by meteorological conditions. Nevertheless, challenges persist in terms of
data availability, sensor inconsistencies, computational cost, interpretability, and real-time deployment needs. Therefore,
future research should focus on developing scalable, adaptive, and explainable air pollution forecasting systems capable of
operating reliably across diverse geographic and climatic settings. Enhanced data fusion methods, incorporation of satellite
and loT data streams, and interpretable deep learning frameworks will be essential to bridge the gap between high predictive
accuracy and practical applicability. Ultimately, this review emphasizes the need for forecasting models that are not only
precise but also transparent, efficient, and supportive of informed environmental policy and public health decision-making.

Copyright © JAE 2024
Corresponding Author’s E-mail ID: rituguuptad14@gmail.com 22



REFERENCES

[1] S. Saminathan and C. Malathy, “Ensemble-based classification approach for PM . concentration forecasting using meteorological
data,” 2022.
[2] U. Im et al., “Reviewing the links and feedbacks between climate change and air pollution in Europe,” no. September, pp. 1-19,

2022, doi: 10.3389/fenvs.2022.954045.

[3] G. T. Cirella, “Financing Costs and Health Effects of Air Pollution in the Tri-City Agglomeration,” vol. 10, no. March, pp. 1-10,
2022, doi: 10.3389/fpubh.2022.831312.

[4] L. Montalvo, D. Fosca, D. Paredes, M. Abarca, and C. Saito, “An Air Quality Monitoring and Forecasting System for Lima City
With Low-Cost Sensors and Artificial Intelligence Models,” vol. 4, no. July, pp. 1-15, 2022, doi: 10.3389/frsc.2022.849762.

[5] M. J. Wolf et al.,, “New Insights for Tracking Global and Local Trends in Exposure to Air Pollutants,” 2022, doi:
10.1021/acs.est.1c08080.

[6] K. Vohra et al., “Rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities from 2005 to
2018,” vol. 4435, no. April, 2022.

[7] S. Aguilar-gomez, J. S. G. Zivin, M. J. Neidell, and H. Dwyer, “No Title,” 2022.

[8] K. Theodorakos et al., “Island Transpeciation: A Co-Evolutionary Neural Architecture Search , applied to country-scale air-
quality forecasting,” vol. 14, no. 8, pp. 1-16, 2021.

[9] G. Huang, C. Ge, T. Xiong, and S. Song, “Large scale air pollution prediction with deep convolutional networks,” vol. 64, no.
September, 2021.

[10] S. He, G. Jang, and Y. Liu, “Hybrid Transformer-TimesNet Model for Accurate Prediction of Industrial Air Pollutants: A Case
Study of the Xinyang Industrial Zone , China,” vol. XX, no. 2, pp. 1-21, 2025, doi: 10.15244/pjoes/203348.

[11] A. Dairi, F. Harrou, S. Khadraoui, and Y. Sun, “Integrated Multiple Directed Attention-based Deep Integrated Multiple Directed
Attention-based Deep Learning for Improved Air Pollution Forecasting,” 2025, doi: 10.1109/tim.2021.3091511.

[12] V. Oldenburg and J. C. Matias, “Forecasting Smog Clouds With Deep Learning : A Proof-Of-Concept,” 2024.

[13] A. Soulie et al., “Global anthropogenic emissions ( CAMS-GLOB-ANT ) for the Copernicus Atmosphere Monitoring Service
simulations of air quality forecasts and reanalyses,” pp. 2261-2279, 2024.

[14] S. Africa, C. Republic, and N. Surgery, “Heliyon Possibilities and limits of modelling of long-range economic consequences of air
pollution — A case study,” vol. 10, no. July 2023, 2024, doi: 10.1016/j.heliyon.2024.¢26483.

[15] H. Yue et al., “Substantially reducing global PM 2 . 5 -related deaths under SDG3 . 9 requires better air pollution control and
healthcare,” pp. 1-13, 2024, doi: 10.1038/s41467-024-46969-3.

[16] N. Nitinattrakul and P. Lalitaporn, “Engineering and Applied Science Research Study the change in air pollution after the COV ID-
19 outbreak in Thailand,” vol. 50, no. 2, pp. 137-148, 2023, doi: 10.14456/easr.2023.15.

[17] L. Vitali et al., “A standardized methodology for the validation of air quality forecast applications ( F-MQO ): lessons learnt from
its application across Europe,” pp. 6029-6047, 2023.

[18] M. Soleimanpour and O. Alizadeh, “Analysis of diurnal to seasonal variations and trends in air pollution potential in an urban
area,” Sci. Rep., pp. 1-9, 2023, doi: 10.1038/s41598-023-48420-X.

[19] B. Ghose and L. Anthopoulos, “A Deep Learning based Air Quality Prediction Technique Using Influencing Pollutants of
Neighboring Locations in Smart City,” vol. 28, no. 8, pp. 799-826, 2022, doi: 10.3897/jucs.78884.

[20] A. Humpe, “Forecasting Air Pollution in Munich : A Comparison of MLR , ANFIS , and SVM,” vol. 2, no. Icaart, pp. 500-506,
2021, doi: 10.5220/0010184905000506.

[21] A. Dutta and W. Jinsart, “Air Pollution in Indian Cities and Comparison of MLR , ANN and CART Models for Predicting PM 10
Concentrations in Guwahati , India,” vol. 15, no. 1, 2021.

[22] M. G. Vivanco et al., “Assessment of the Effects of the Spanish National Air Pollution Control Programme on Air Quality,” 2021.

[23] J. De Bont et al., “Articles Ambient air pollution and daily mortality in ten cities of India: a causal modelling study,” Lancet
Planet. Heal., vol. 8, no. 7, pp. e433-e440, 2021, doi: 10.1016/S2542-5196(24)00114-1.

[24] J. Weuve et al., “Exposure to Air Pollution in Relation to Risk of Dementia and Related Outcomes : An Updated Systematic
Review of the Epidemiological Literature,” vol. 129, no. September, 2021.

[25] C. Menares, P. Perez, and S. Parraguez, “Urban Climate Forecasting PM 2 . 5 levels in Santiago de Chile using deep learning
neural networks,” vol. 38, no. June, 2021, doi: 10.1016/j.uclim.2021.100906.

[26] D. Silva, Y. De Souza, T. Antonini, and H. Valadares, “Unorganized machines and linear multivariate regression model applied to
atmospheric pollutant forecasting,” vol. 42, 2020.

[27] A. Kallel, “Jo ur I P re of,” 2020.

[28] Q. Guo et al., “Air Pollution Forecasting Using Artificial and Wavelet Neural Networks with Meteorological Conditions,” pp.
1429-1439, 2020.

[29] A. Ukhov, S. Mostamandi, A. Silva, J. Flemming, and Y. Alshehri, “Assessment of natural and anthropogenic aerosol air pollution

Copyright © JAE 2024
Corresponding Author’s E-mail ID: rituguuptad14@gmail.com 23




[30]

[31]
[32]

[33]

[35]

[36]

[37]
[38]
[39]
[40]

[41]

in the Middle East using MERRA-2 , CAMS data assimilation products , and high-resolution WRF-Chem model simulations,” vol.
5, pp. 9281-9310, 2020.

M. Arsov, E. Zdravevski, R. Corizzo, N. Koteli, and K. Mitreski, “Short-term air pollution forecasting based on environmental
factors and deep learning models,” vol. 21, pp. 15-22, 2020, doi: 10.15439/2020F211.

A. C. Science, “PM10 FORECASTING THROUGH APPLYING,” vol. 3, no. 1, pp. 3143, 2020, doi: 10.2495/EIl-V3-N1-31-43.

Y. Yarragunta, S. Srivastava, D. Mitra, and H. Chandra, “Influence of forest fire episodes on the distribution of gaseous air
pollutants over,” GlScience Remote Sens., vol. 57, no. 2, pp. 190-206, 2020, doi: 10.1080/15481603.2020.1712100.

F. Jammoul, T. Kuenzer, E. Stadlober, and H. Siegfried, “Since January 2020 Elsevier has created a COVID-19 resource centre
with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on
Elsevier Connect , the company ’ s public news and information website . [34] Y. A. Y. Okkaoglu and E. G. M. E. Yiicel,
“Estimation and forecasting of - PM 10 air pollution in Ankara via time series and harmonic regressions,” Int. J. Environ. Sci.
Technol., vol. 17, no. 8, pp. 3677-3690, 2020, doi: 10.1007/s13762-020-02705-0.

S. Lolli, “Impact of meteorological conditions and air pollution on COVID - 19 pandemic transmission in Italy,” Sci. Rep., pp. 1—
15, 2020, doi: 10.1038/s41598-020-73197-8.

M. So et al., “A demonstration project of Global Alliance against Chronic Respiratory Diseases: Prediction of interactions
between air pollution and allergen exposure — the Mobile Airways Sentinel NetworK-Impact of air POLLution on Asthma and
Rhinitis approach,” vol. 0, no. 13, pp. 1561-1567, 2020, doi: 10.1097/CM9.0000000000000916.

M. T. Hasan, V. S. Chourasia, and S. M. Asutkar, “A Forecasting tool for Air Quality Monitoring Built up on Cloud and IoT,” no.
10, pp. 3821-3832, 2019, doi: 10.35940/ijitee.J9992.0881019.

M. Jia et al., “Regional Air Quality Forecast Using a Machine Learning Method and the WRF Model over the Yangtze River Delta
, East China,” pp. 1602-1613, 2019, doi: 10.4209/aaqr.2019.05.0275.

T. Borsdorff, J. De Brugh, S. Pandey, O. Hasekamp, I. Aben, and S. Houweling, “Carbon monoxide air pollution on sub-City
scales and along arterial roads detected by the Tropospheric Monitoring Instrument,” pp. 3579-3588, 2019.

P. Tarin-carrasco, M. Morales-suarez-varela, U. Im, J. Brandt, and L. Palacios-pefia, “Isolating the climate change impacts on air-
pollution-related- pathologies over central and southern Europe — a modelling approach on cases and costs,” pp. 9385-9398, 2019.

G. P. Brasseur et al., “Ensemble forecasts of air quality in eastern China — Part 1 : Model description and implementation of the
MarcoPolo — Panda prediction system , version 1,” pp. 3367, 2019.

Copyright © JAE 2024
Corresponding Author’s E-mail ID: rituguuptad14@gmail.com 24



	TABLE 1. COMPARISON OF TRADITIONAL STATISTICAL AND CLASSICAL ML MODELS FOR AIR POLLUTION FORECASTING

